Aturan Sinus dan Cosinus: Rumus & Contoh Soal

Dalam dunia trigonometri tentu kalian tidak asing dengan sinus, cosinus, dan tangen. Tahukah kalian bahwa sinus dan cosinus memiliki aturan yang khusus dan diterapkan dalam segitiga?

Lalu apa saja aturannya? Mari kita lihat penjelasan lebih lanjut dibawah ini.

Aturan Sinus

Aturan sinus berbunyi bahwa perbandingan panjang sisi sebuah segitiga dengan sinus sudut yang menghadapnya memiliki nilai yang sama.

Lebih jelasnya pada gambar dibawah ini

Aturan Sinus

Keterangan

  • A = besar sudut di hadapan sisi a
  • a = panjang sisi a
  • B = besar sudut di hadapan sisi b
  • b = panjang sisi b
  • C = besar sudut di hadapan sisi c
  • c = panjang sisi c
  • AP ┴ BC
  • BQ ┴ AC
  • CR ┴ AB

Perhatikan segitiga ACR

Sin A = CR/b  maka CR = b sin A …(1)

Perhatikan segitiga BCR

Sin B = CR/a  maka CR = a sin B …. (2)

Perhatikan segitiga ABP

Sin B = AP/c  maka AP = c sin B … (3)

Perhatikan segitiga APC

Sin C = AP/b  maka AP = b sin C …(4)

Berdasarkan persamaan (1) dan (2) didapat

CR = b sin A = a sin B maka a/sin A = b/sin B …(5)

Berdasarkan persamaan (3) dan (4) didapat

AP = c sin B = b sin C maka b/sin B = c/sin C …(6)

Kemudian, berdasarkan persamaan (5) dan (6) diperoleh

 a/sin A = b/sin B = c/sin C

Persamaan ini yang kemudian disebut dengan aturan sinus.

Baca juga Persegi Panjang.

Contoh Soal Aturan Sinus

Andi sedang mengukur mainan segitiganya yang tiap sudutnya dikodekan dengan A, B, dan C, kemudian diketahui segitiga tersebut memiliki sudut A = 30º, sisi a = 6cm dan sisi b = 8cm. Hitung besar sudut B!

Pembahasan

Akan dicari besar sudut B

sin B = (b sin A)/a  

sin B = 8/6 sin 30̊

sin B = 2/3

B = arc sin B

B = arc sin (2/3)

B = 41,8̊

Jadi, besar sudut B adalah 41,8̊ atau 180̊ – 41,8̊ = 138,2̊

Baca juga Kubus.

Aturan Cosinus

Aturan cosinus menjelaskan hubungan antara kuadrat panjang sisi dengan nilai cosinus dari salah satu sudut pada segitiga.

Lebih jelasnya pada gambar dibawah ini.

Aturan Sinus

Keterangan

  • A = besar sudut di hadapan sisi a
  • a = panjang sisi a
  • B = besar sudut di hadapan sisi b
  • b = panjang sisi b
  • C = besar sudut di hadapan sisi c
  • c = panjang sisi c
  • AP ┴ BC
  • BQ ┴ AC
  • CR ┴ AB

Perhatikan segitiga BCR

Sin B = CR/a maka CR = a sin B

Cos B = BR/a maka BR = a cos B

AR = AB – BR = c – a cos B

Perhatikan segitiga ACR

b2  = AR2 + CR2

b2  = (c – a cos B)2 + (a sin B)2

b2  = c2 – 2ac cos B + a2 cos2 B + a2 sin2 B

b2  = c2 – 2ac cos B + a2 (cos2 B + sin2 B)

b2  = c2 + a2– 2ac cos B

Menggunakan analogi yang sama, kemudian diperoleh aturan cosinus untuk segitiga ABC sebagai berikut

a2 = c2 + b2– 2bc cos A

b2 = a2+ c2 – 2ac cos B

c2 = a2+ b2 – 2ab cos C

Baca juga Teorema Phytagoras.

Contoh Soal Aturan Cosinus

Diketahui sebuah segitiga ABC memiliki sisi dengan panjang

a = 10 cm

c = 12 cm

besar sudut B = 60̊.

Hitung panjang sisi b!

Pembahasan

b2 = a2+ c2 – 2ac cos B

b2 = 100+144 – 44 cos 60̊

b2 = 244 – 44(0,5)

b2 = 244 – 22

b2 = 222

b = 14,8997

Jadi, panjang sisi b adalah 14,8997 cm

Demikian pembahasan tentang aturan sinus dan cosinus. Semoga bermanfaat. Baca juga Bilangan Desimal.

Leave a Comment