Program Linear: Pengertian, Rumus, Contoh Soal

Pembahasan kali ini yaitu mengenai program linear.

Tentu kalian pernah belajar mengenai persamaan garis? Apa saja yang kalian pelajari dalam persamaan garis?

Dalam materi persamaan garis kalian telah diajari bagaimana menggambar garis dalam bidang kartesius.

Pengetahuan mengenai persamaan garis tersebut akan kita gunakan dalam materi program linear ini.  

Selain persamaan garis, materi lain yang akan digunakan yaitu mengenai pertidaksamaan linear dua variabel.

Berikut penjelasannya.

Materi Program Linear

Pernahkah kalian mendengar mengenai program linear?

Program linear merupakan salah satu metode dalam menentukan solusi optimal dari suatu permasalahan linear.

Dalam program linear terdapat fungsi objektif atau fungsi tujuan. Syarat, batas, dan kendala dalam program linear merupakan suatu bentuk pertidaksamaan linear.

Dengan menggunakan program linearSelanjutnya akan dibahas mengenai penerapan program linear dalam kehidupan sehari-hari.

Program Linear dalam Kehidupan Sehari-hari

Program linear banyak diterapkan dalam berbagai bidang. Dalam bidang matematika dan ekonomi, program linear dapat digunakan sebagai salah satu teknik optimasi produksi dalam suatu pabrik maupun suatu perusahaan.

Dalam bidang farmasi, program linear juga dimanfaatkan untuk menentukan dan memodelkan pengoptimasian produksi obat.

Hampir semua bidang memanfaatkan program linear sebagai metode dalam melakukan optimasi.

Dengan menggunakan program linear kegiatan-kegiatan (misalnya produksi di pabrik, produksi obat, dan lain-lain) akan optimal, sehingga perusahaan memiliki keuntungan yang lebih besar jika dibandingkan dengan tidak memanfaatkan program linear.

Selanjutnya akan dijelaskan mengenai langkah-langkah dalam menentukan nilai optimal dengan program linear.

Langkah-Langkah Program Linear

Berikut merupakan langkah-langkah dalam melakukan optimasi menggunakan teknik program linear.

  1. Tentukan variabel-variabel kendalanya.
  2. Tentukan fungsi tujuan.
  3. Susun model dari variabel-variabel kendala.
  4. Gambarkan grafik dari model yang telah dibuat.
  5. Tentukan titik-titik potong dari grafik.
  6. Tentukan daerah penyelesaian yang sesuai.
  7. Hitung nilai optimum dari fungsi tujuan.

Selanjutnya akan dibahas mengenai contoh soal program linear. Baca juga Fungsi Komposisi.

Contoh Soal Program Linear

Perhatikan contoh berikut.

Pada ilustrasi berikut terdapat permasalahan terkait penumpang besawat, berat bagasi, dan harga tiket.

Dalam suatu pesawat terdapat 48 tempat duduk penumpang. Setiap penumpang kelas utama maksimum membawa 60 kg bagasi, sedangkan penumpang kelas ekonomi hanya diperbolehkan membawa bagasi maksimal 20 kg. Pesawat tersebut hanya mampu menampung total bagasi penumpang maksimum 1440 kg. Jika harga tiket penumpang kelas utama adalah Rp1.500.000,00 dan penumpang kelas ekonomi adalah Rp1.000.000,00, tentukan banyaknya tempat duduk kelas utama dan kelas ekonomi agar pendapatan dari penjualan tiket tersebut maksimum.

Pembahasan

Misalkan variabel-variabel kendala dimisalkan sebagai berikut.

  • x  : banyaknya penumpang kelas utama
  • y  : banyaknya penumpang kelas ekonomi

Menentukan fungsi tujuan:

Fungsi tujuan dari permasalahan tersebut yaitu menentukan pendapatan maksimum:

z = 1.500.000 x + 1.000.000 y

Menyusun model dari variabel-variabel kendala:

Banyak tempat duduk maksimum adalah 48.

Banyak bagasi maksimum 60 kg (kelas utama) dan 20 kg (kelas ekonomi) dengan total bagasi maksimum 1.440 kg.

Sehingga

x + y ≤ 48

60 x + 20 y ≤ 1.440

Grafik dari fungsi tersebut:

x + y ≤ 48

x480
y048

Titik yang dilalui garis yaitu (48, 0) dan (0, 48)

60 x + 20 y ≤ 1440

x240
y072

Titik-titik yang dilalui garis yaitu (24, 0) dan (0, 72)

Gambar grafik fungsi kendala yaitu sebagai berikut.

Program Linear

Menentukan titik potong kedua grafik.

Dengan menggunakan konsep SPLDV diperoleh

x + y = 48 à y = 48 – x

60 x + 20 y = 1.440

Sehingga

60 x + 20 (48 – x) = 1.440

60x + 960 – 20x = 1.440

40x = 1.440 – 960

40 x = 480

x = 480/40 = 12

x + y = 48

x = 12 à y = 48 – 12 = 36

Titik potong kedua garis pada (12, 36)

Menentukan daerah penyelesaian.

Perhatikan daerah penyelesaian berikut.

Daerah Penyelesaian Program Linear

Pada gambar tersebut terdapat daerah penyelesaian yang berwarna ungu. Langkah selanjutnya yaitu menghitung nilai optimum dari fungsi tujuan.

Titik optimumnya yaitu (0, 0), (24, 0), (12, 36), dan (0, 48).

Fungsi tujuan:  z = 1.500.000 x + 1.000.000 y

(0, 0) à z = 1.500.000 (0) + 1.000.000 (0) = 0

(24, 0) à z = 1.500.000 (24) + 1.000.000 (0) = 36.000.000

(12, 36) à z = 1.500.000 (12) + 1.000.000 (36) = 18.000.000 + 36.000.000 = 54.000.000

(0,48) à z = 1.500.000 (0) + 1.000.000 (48) = 48.000.000

Maksimum penjualan tiket yaitu 54.000.000

Jadi, agar penjualan tiket maksimum maka banyaknya penumpang kelas utama adalah 12 penumpang dan banyaknya penumpang kelas ekonomi adalah 36 penumpang.

Mari kita simpulkan bersama mengenai program linear.

Kesimpulan

  • Program linear merupakan salah satu teknik optimasi yang digunakan dalam berbagai bidang untuk menentukan optimalisasi suatu kegiatan (misalnya produksi, penjualan, dan lain-lain).
  • Langkah-langkah penghitungan dengan menggunakan program linear yaitu menentukan variabel kendala, menyusun fungsi tujuan, menyusun model, menggambar grafik model, menentukan titik potong grafik, menentukan daerah penyelesaian, dan menentukan nilai optimum dari fungsi tujuan.

Demikian pembahasan mengenai program linear. Semoga bermanfaat bagi pembaca semuanya. Baca juga Persamaan Linear.

Leave a Comment